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ABSTRACT

The present paper is concerned with the estimation of *he
transition distributions of a Markov renewal process with “initelr
many states, which extends and unifies come aspects of the resultc
irn the special cases cf discrete and continuous paraveter llaruzsw
chains, A natural estimator of the transition distributions is
defned and shown to be consistent. Limiting distributions of
this estimator are deriveds A density for a Markov renewal procecs

1s developed to permit the definition of maximum likellihcod

estimators for a renewal process and {or a larlov renewal process,
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INTRODUCTIO!N

The peneral theory of statistical inference in larkov processes
bepan with Bartlett's paper in 1951, [2]. Later developments are
presented in Billingsley's book [/] and his expository paper [5],
both of which appeared in 1961, We refer in particular to the
development of maximum likelihcod estimators for the tranci<ticn

probabilities of a Markov chain, either discrete or continuous

= a1 Be

parameter, by Billingsley [4] and more recently by Albert [1] in

+ ooa.

1962, The present paper is concerned with the estimatlon of th

transition distributions of a Markov renewal process with "initely

Fa e 3

nany states, which extends and unifies some aspects of i}

D
4
[

b

in the speclial cases of discrete and continuous parameter larice-:
chainses In Chapter 2 a natural estimator of the transition dis-
tributions 1s defined and shown to be consistent, Limitins dis-
tributions of this estimator are derived in Chapter 2, & density
for a Markov renewal process is developed in Chapter /) Lo permit

the definition of maximum likellhood estirators {or a renewal procecr

’

in Chapter 5 and for a Markov renewal process in Chapter <.,

1., PRELIMINARY CONCEPTS AND DEFINITIOINS

The constructive definition siven in [11] of a Markov renewal

. 0

process (MRP) with m (£ =) ctates “o brie 'l as follows. One is ri-ven -

mabtrix of transition distributions (Di%) where each 7,. 1z g

[y L2

mass function defined on (-»,*) satisfying Qij(x) =0 for x40

A 2] — S
and E 2..(®) =1, (1 £1Zn)s Oneis also 7iven an m-tuple "

=



N

initial probabillties (pl’pz’""p ) which satisfies P 20
andz 1, Consider any two-dimensional Markov process

{(Jn,xng; n 2 0} defined on a complete probability space that

satisfies X =0 (Bese), P[J°= k] = p, and

P[Jn =k, Xn S xlJo’Jl,ooo,Jn-l’xl’oooxn-I] = QJn-l’k(X) (3080)

for all x e (-=y®) and 1< k {me The matrix (p; J) is defined
= _ -1
by Py = OU(@). Ifr Py g > 0, set Fij = Py 0'1.1’ while if

= 0, then let F be arbitrary. The integer-valued stochastic

Pyj 1]
processes {l(t); t > O}, {N (t); t >0}, and {II (t); t 2 0} are defined by
N(t) = sup {n > 0 2 Y- < t}, Ny (t) = the nunber of times

Je=J for 1{kg N(t), and ij(t) = the number of times

Jo=1 and J =] for 1<k N{t)e Then the stochastic

process {Nl(t),I-Iz(t),uo,nm(t); t >0} 1s called a Markov renewal

process determined by the given initial probabilities and matrix of

transition distributions,

The following consequences of the above definitions, derived

n [11], will be used below.

pod ' [ X X} = =
P[Jn J 1959 ’Jn-2’Jn-l 1] pij
(1.1) P[xrl < x’JO,u-,-Tn_E,Jn_l =1, I =J] = FiJ(x)
[x, < | ] :
P[X <X ,0e00X <x[J3;n20l= 0 F (x,)
ny 1 n, = "%'"n 1=1 J -l,J

i

for 0 < n, ST I n,, the last equallity holding with probability

onee



It 43 assumed throurhout that the !RP 1s irreducible,
recurrent, and that FiJ =H for 1 £ 3 £ me This last

assumption incurs no loss of generali‘y as iz pointed out in [12].

Estimators for the transition probabllities Oij(x) are
defined on sample functions of the MRP over [O,t). Tlheze sample
functions of the MRP are equivalent to the sample {unctions
oo X, p%°°,] . v X te the holding tin
(JO’JI’ .’JII(t) ,X.l,}iz, ,/-”(t)) Le /i denote holc ne e

of the I vizit to state 1, that is the (%3181 %m,

1€ i< Ni(t)} are just a relahelins of {xi; 1<1 £ %N(t)].

2. DEFINITION AND GONSISTENCY OF A IIATCURAL Z3TINATOR

Consider the estimatcr defined by
(2.1) 0y 5 (xst) = By (¢ ¥, (x32),

where v, x > 0,

(2.2) SHORSINOVEROR
" 1 ’:i(t)
(243) Hy (x3t) = 10, (£)7" 2 e(x - %),
k=1

and where e(u:) equals one if u >0 and zers otherwice, That iz,
a
Hi(x;t) is the ordinary empirical distribution function but

determined from the sample, of random size H:(t), of the hoidinr

-

2>

,.(x3%) to be zero 1T I (%) = 0.

- g -

times in state 1. Interpret



The estimator (2,1) is a natural combination of estimators
used in Markov chain inference and in classical inference for fixed
sample size, Derman [8] has studied 61 j(t) as an estimator for
the transition probabilities of a Markov chain, with the small
diffcronce that the total number of transitions, N(t),
is not random, The empirical distribution function for non-random

sample size has been studied extensively (cef. Darling, [7]),

Consistency of (2.,1) and the limiting distributions of (R.1)
are obtainel using the general 1limit theorems for MRP developed by
Pyke [12]. In [12] the 1imiting behavior (as t = ®) of sums of

the form

N(t) |
(2.4) W (t) =2 £I__1 0 5K )
=}

is studied for real valued functions f defined on the state space
of an MRP, We recall the notation used in [12], hyy end kg
denote the first moment of the distribution of the first passage
time from state i1 to state J of the MRP and of the corresponding
Markov chain {an n2 O} s respectively. Define recurrence indices

r r =0 and, for s >1
j,s by J’o ’ 2 L

rj,s sup {l k= k> rj,s-l’ Ji & j(rj,s-l ) M 4 k)}.

The sequence of random variubles (r.v.'s) {U‘1 gt s > 0} is
’

defined by

s WP o %



rj,s+1
N
(2.5) UJ’S = z f(Jn_l,Jn,Xn).
ST

That is, U 1s the contribution to the sur- Wf(t) obtained

Jos8
between the sth

and the (s+1)th occurrence time of state .
The random variables {Uj g 82 1} are independent and identically
’

distributed, Set

@ |
Ryse =f £(1,k,x) ink(x), Ay =2Aik
o k=1

o m
1 > 2 ! K
B -_[ [2(1,%,%)] dqik(x;, B, -E:Bik.
=1

When the mean and variance of Ui 1 exist, they will be denoted
’
by ™y and df respectively, Since m 1s finite, it follows

frem [12] that when they exist, they are given by

m
3
(246) n :2 A /ur
r=1
and
m
2 _ 2 :
(27) 0=y D Bl ek
r-
m

-
=1 3% # oM * 3
i 22 Z; LSS L AR (RO
o



Theoren 2,1t The estimator (2,1) is uniformly strongly consistent
as t «® 1n the sense that with probability one,

(248) max s s« (x38) = 0 (x)] - 0.
il BRCEERY

Proofs Rewrite (2.8) as

N, L (8)/N. (t) - H, (x3t) + p, [, (xst) = H, (x)]]
x;f}( s:pl[ij( )/ () - pyy] Hy (x5 Pyylhig (X3 ¥

gx;a’ujc EROVROES S nex sup | & (xst) - Hy(x)]

Since Ni(t) - ® (a,5,) by the regularity of the MRP, then one
concludes from the Glivenko-Cantelll theorem for non-random sample
sizes, that sup | f{i(x;t) - Hi(x)l <0 (aese)e The proof is

X
completed by showing [Nij(t)/Ni(t) - pij] +0 (8e8s) for 1<1, J <m

Let k, denote the state visited after the ™" visit to state 1.
Then
Ni(t)-l ni(t_)
(2.9 > Yk STy® <D o g
1=1 4:1
where

6k 3 denotes the Kronecker delta

!

and by the Strong Law of Large Numbers both the right and left hand
sides of (2.9), when divided by N, (t), converge to Py with

probability one.



3. AS®MPTOTIC DISTRIBUTION OF THE NATURAL ESTIMATOR
The limitins distribution of (Z.1), (2472), (243) can be
obtained by applying the central 1imit theorem for functlons

MRP (C.fo Lemma 7.1’ [l?j)o

on

an

- i'r“ - bl
Theorem 3,1: For fixed 1,],x, (t L.“(t) - Piyls t‘;Hi(x;t) - 1, (x)])
converges in law as ¢ - = to g bivariate normal reve with means
zero and covariancc matriz (”‘j> Fiven by
‘!
M= \ "

1) Oqq S iteePe o (1oDiu)s dan =i, -Ix ¢, = C..
(3.2) JL R 11p13( ‘1;)’ 2 i; fy () 1=, ()2, 17 1 g
Proof: Let w, =andi w, be arbitrary conztants. 7c prave th
asymptotic Jjoint nommality 4t sulfices to show that
(2.7) ., e kA (%) 1 L, ETD (x3%) = ¥, (%)
PR 2 wlu Lpij v _pij + A;u ““i }n,u - A-i“

onver~es in law to a normal reve Ior all Wy anid v.e .e

rewrite (3.2) as the product of 4/, ()] and a sun o “he “orm

For the function (32.2)



hy = wléri[prj - piJ] * w26ri[Hr(x) - Hi(x)] -
and
B, = o [+ Pyy” = 2y o] 4w THL(x) + 1, 7(x) < 2 (a)Hy () 1)6

for 1 < r £ mj hence m, = O and the third sum in (2.,7) is zero.

Then the variance of U is
1,1

o z B i fy/bde = WPy (L - Byl + H (1L - By ()1

2
The variance ¢, is finite, so from Lemma 7.1 of [12] the

liniting distribution of t~% Wa(t) for the £ given in (3.3)
is normal with zero mean and variance di}hii. But t/Ni(t) ~;xii(a.s.)

so the 1limiting distribution of (3.2) is normal with zero mean and

variance “iidf as required,

The zero correlation between ﬁij(t) and ﬁi(x;t) ylelds the

following result.

Corollary 3,2: For fixed 1,J,s, ﬁij(t) and ﬁi(x;t) are

asymptotically independent.

The asymptotic normality of (3.2) can be used to obtain the

limiting distribution of aij(x’t)°

Corollary 3,3: For fixed 1,j,x, *[Qij(x;t) -0 j( x)] converges

inlawas t - to a normally distributed r.v. with mean zero and



o)

+

variance ecual to

(3:4) M

Proofs

(3.5)

By & well known conversence theorem (Cramer [6], Section 20.6) the

ct

he same as the limiting distribution

With the particular choice Wy, = H.(x) and w,=1p

just (3¢6) and the proof is completes

The asymptotic normality given in Coroll 342 can be extended
JmT )

to the finite dimensional distribution of the reve's {x

ijk
..(x ) =0, .(x) for 1<1, ;<m and 1< %< ste
1] 1] *x = =
Theorem 3.4t For fixed s, the distribution of {z’w%;u;
.-“.(.
1<1, j<my 1{k<s} converges inlawas t —== toan

-~

m~s=dimensional normal reve with zero mean and covariance matrix

(2, k,u"w\ given by
= g 3 " (minl 1
(38) aij?,;"' _‘“iiéiup'f "(Xw’OJv i “i(“ln‘xk'xw‘)piv
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Proof: Let {\ijlr’ 11, J<my 1<k<s} bearbitrary constants.
It will suffice to show that

S
3,
(3.9) tE i 22,"1& L

1=1 J=1 k=1

converges in law to a normal re.ve. for all real x“k. We may

rewrite (3.9) as

m m S
[t/1, ()] t”z [Nl(t)/Ni(t)lzz Mgk

il 71 k=1

o([y, (8) = py 1y (0] (g st) + g g (8D (R (rat) = By ()]s

As in the proof of Theorem 3,1, the expression may be shown to have

the same limiting distribution as

m I ]
[t/nl(t)]t" 2 by /044] 22 Mk
1=]

i=1 k=1

-1, (K, (x) + pijni(t)ﬁi(xk;t) - 2py 5N, () (x )],

This in turn can be written as a product of [t/Nl(t)] and a sum

of the form (2.4) by using the function £ defined by



3.10) £(rys,y) = 2 Big 22

i=1l Jj=1 =1
i(x‘ )0 pe Pi; e(X«K"Y) i ZHi(xk)pi.',lo

For this function,

o m .
o Tl 2 Fig 2. 13k Ort
1=1 =1 k=1
g (x.)p. . + 0, H (x (x)p,.] =

for 1< r<mj hence m. =0 and the third sum in (247) is zero.
Then the variance of ’Jl 1 is given by
’

m
s

2 * #*
ot —2 3 p’_l/prr

=1

which may be shown to reduce to

m S m S

m
2 N VY * VI - .
9" }.}_ -‘.\’ 2, Moy Mnlbya /i ]
o e el :

o[ H, (x_) - oH
[H, G ) (x, )y 565, = 28, (0 )0y (x Doy Py 4

4 Hi(minpck,ij )pivpijl =
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The variance ci 1s finite, so by the same argument as in Theorem
3,1, the limiting distribution of (3.9) is normal with zero mean
and variance di“ll' The required covariance matrix (3.8) is
obtained from the coeflficients of Xﬂjk‘\uvw’ thereby completing

the proof,

Consider a renewal process, that 1s, an MRP with one state
for which m =1, p,q = 1, ﬁll(t) = Nl(t) = N(t)e From Theorem
e oA N 1 - 1
3,/ the limitine distribution as ¢ -« of N(t) “Hl(xkit) ul(xk)J for
1{k<s with s fixed, 15 normal with zero means and covariance
matrix (a. ) lefined by

K oW

. [t . 1 b - { 1.
B Bt (mngck,xw ) Il(xk)Hl(xw)J

Consider *he Markov chaln obtained from the MRP by letting
the holding times be derenerate at one, that is, Hi(x) = ¢(x-1),
= 1 * i »wom 2 2] -
Bys = #yfe From Theoren 2./ one obtains that as t - =,
t:[ﬂi,(t)/ﬁi(t) - pi’: for 141, j4m converges to a normal

reve With zero means and covariance matrix given by

6

= # —
By ur - P %y pij[éjv Pyyle

Thic !z egidvalent to Jerman's result on the limiting Aistribution

of n®l, (n)/l(n) (cefs Billingsley [5]).

Le  DENSITY FOR A MARKOV RENKWAL PROCESS

A ldensity Cor an MRP Is defined 1n a manner similar to the



)

definition of a density for a continuous time Markov process by
Billingsley [4] and Albert [1]. From the constructive definition
of an MRP given in Section 2, almost all sample functions for an
MRP up to time t can be represented as the finite tuple

R(t) = (Jo’Jl""’Jﬂ(t)’ Xl"“’xt.’(t‘))' Almost every sample

<

function may therefore be represented as 2 point in .= ' v
ay D p n=o “n
where 4 is the (n+1)-rold Cartesian product of
{1,24000,m} x [0,®)e Let A be the product Borel field on &
A b} - 9 o
generated by all subsets of {_,Z,ooo,m; and the ordinary Borel
sets on [0,%)e Let A be the smallest o¢-Field containine each

Cfn, 0 { n { = For convenience we will assume that the underlying

ey

probability space on which the MRP is defined is (s,f. On this

probabiiity space the measure P s as “followse

Theorem 4e1: For any n 2> O and integers 1 €3, §m for

0 £ign, the probability measure P on (2, 1s pgiven by

-

PIN(E) =0 T i= F eeer J. = X € a, qo0ey X [¢%
(4e1) [N(t) %oto Tl g = e S Uqgensy A < 30
n-1
= p. [1 -1, (.zt, B pac dH, (:-:.ﬁ )
Jo In T T R
n
where u . =t — x = x_ = eee - x  and
V) A o < n
= eee X . ¢t o el a B }
Cn {(xl,x2, oX ) Og:xk_-lk,l_f\n anc ut/O)

In particular,
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Proof: From (1.1) the conditional distribution of {X,, 1 <1 < n}
Flven {Ji’ 0<1<n} 15 that of n independent rove's with

distribution functions HJ respectivelys. The proof {ollows

.
immediately, )

The denzity of the process can now be exhibited as the Radon-
Mkodym derivative of the provability distribution (4.1) with
respect 4o %ne reasure defined as followse Let 1 be Lebesgue
measure on _0,®), .e% * be counting measure on {1,2,...,m},
and let 9, be the appropriate product measure on (un, 6@1). For

each set B ed define «*(2) :2 0. (21N .)n), which determines

n=o
a measure on  (wya).

The density is now seb Torth explicitly.

Theoren 4ozt If each i, 1: absolutely continuous with densit;-

-

function h,, then one may write

P(B) [ e(v) d a*(v), B ed,
2]

where



JO S o
n-1
2 ey ={ p. 3-8 ()0 B Bl Y
Jo I ieo Tiden e kM
T = (jo’."’jn’ﬁ’.“’xn) with Ut >0
0 otherwise

and where Uy = t - =X = 488 s xn'

Proof: Let the conditional density of (JO,...,Jn,xl,-°°,Xn) with
respect to ¢n» &iven that N(t) = n, be denoted by
gn(jo,oot,jn,xl,o-o,xn). This conditional density exists since
under the stated condition, R(%t) is a vector reve of “ixed
dimension whose coordinates are either discrete or absolutely
continuous. By Theorem /.1, P[N(t) = n]gn mist coincide a.ee with

fo Thus, for B ¢d),

@®
P(B) =§ fds :ff‘dn*
n=o

BN Gr B

and so f 1is the required density with respect to g*,

For the special case of exponential holding times (i.e. &
continuous Markov process), the density (Le2) reduces to Albert's
density (cefe Theorem 3.2, [1])e For a renewal process, i.e. an
MRP with one state, the sample functions are of the form

R(t) = (Xl’X2’°°°’XU(t)) and for H(x) absolutely cortinuous ,
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(4e2) reduces to

(4e3) r(v) = [1 - H(u,)] ﬁ

o h(x,) if v= (xl,xz,-oo,xn).

5 MAXIMUM LIKELIHOOD ESTIMATION FOR A RENEWAL PROCESS

Maximum 1ikelihood estimators (MLE) may be obtained by maxi-
mizing (4e3) over a selected class of densities for an observed
sample function R(t) = (xl’°°°’xN(t))' The classes of densities
considered will be exponential, increasing failure rate, and
non-increasing, Throughout the remainder of the paper it will be
assumed that Hi(x) is absolutely continuous (1 < i < m) and that

whenever t 1is fixed, N(t) and U, will be denoted by N and

t
U respectively.

a. Exponential density with parameter A\, that is
h(x) =\ exp(-2x).

From (4e3) the likelihood function is

N
L(v) = exp(=27) 0 % exp(-AK)
=1

and the log lilrellhnod function is

N

(5.1) N log % - x[z X, + Ul

k=1
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The maximum of (5.1) occurs at X = N/t, so the MLE for h(x) is

given by
(562) ;1(x) = [N/t] exp[-Nx/t].

The MLE (5.2) is strongly consistent since N/t —=A(aes.). This
example i3 the well lmown one of the Polsson process for which
the estimator of N 1s the same for a fixed-time sample as for

a fixed-number-of-events sample.

be Increasing failure rate (IFR) densities, that is the class
of densities Ior which the fallure rate q(y) = h(y)/[1 - E(y)] is
increasing. Marshall and Proschan [10] and Grenander [9] have
derived the MLE for q(x) based on a sample of non-random size

(Leee U= 0 and N(t) = n) to be

0 for y < Yl
nmin max (v-u)[(n-u)(Yu+l-Yu) + eeo + (n-v+1)(Yv-Yv_1)]-l
2141 u<t
(503) a(Y) =
for ¥, Ly« Yi+1(1 <1< n-1)
® for y2 Yn

where {Yiz 11 n} are {Xi; 1Rl ¢ n} arranged in increasing
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order, By an argument similar to the one used in [10], the MLE

for q(x) can be derived for a renewal process.

Theorem 541t Let (Yl, LPTTXY Yﬁ) be an ordered sample from

an IFR renewal processe If Y, UK Y, for 14 SN-1

+1
0 (o]
or U>Y, and i =N then the MLE of a(y) 1is given by

0 for y < Yl

(544) 8(y) = min max (v—u)[cu +----+-cv_1]-l for Yi LyK< Yi+1
21+l ugi (1<1<N-1)

® for y 2 Yﬁ
where

(1-141) (Y, - 1) for 11 <1
(5e5) ¢y = (et )(Yy 1= )+ (U-Y ) for t=1

o) 0] (o]
(H-i)(Yi+1 = Yi) for io <i<N,

If U< T a(y) 1s glven by (5.3).

Proof: Since h - g exp(~7) and 1 - H = exp(-Q) where

y
q(y) = h(y)/0- H(y)] and 9(y) =f q(z) dz, the log likelihood

. . o
function can be written as



N
(546)  log L= 1ocq (1) -$ a(,) - o).

For q(y) 4increasing,

Jar) 2 P w0, -1 a )

and

i1-1
G(U)Zz(:f DAt g )

it 1 it

e
1l
b4

Let {ci; 1£1 <N} be defined by (5¢5)e From (5.6)

N N-

(507) log L Sz log q(Yi) -2 cy q(Yi).
i=1

=

Without the restriction that q(Yl) < q(Yz) Leee g q(YN)’ the maximm

of the right hand side of (5.7) is achieved for 6(2&) = o} for
1<1<Ne (For 1=1,cl" is not defined, but the limiting
argument used in [10] to obtain (5.3) ean be applied to get cy = @)
However, q(Yl) < q('x’z) { eoe & q(Y#,) defines a convex set and the
right side of (5.7) satisfies Brunk's conditionsy so Brunk's result

(Corollary 2.1, [3]) can be applied to obtain the maximum at (5e¢4)e

Ir U<y, 9(U) >0 and (547) reduces to the corresponding

statement for U = 0, which is maximized by (5s3) &
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The MLE for h(y) 1s obtained from (5.3) or (5.4) in the

natural way, that is

(5.8) i) -0 f ) =l

(o)

The MLE (544) can be shown to be a consistent estimator, so

that (548) is a consistent estimator of h(y)e

Theorem 542: If q(y) is increasing, then for every t,
Q(t;) < lim inf a(to) < lim sup a(to) < q(t:).

Eroof: The proof follows directly from the consistency of (5.3)

(cefe Theorem 4e1, [10]) after the ooservation that
(N-i)(y1+1 =%)<e ¢ (N—i+l)(Yi+1-Yi) 1<4 N1,

This type of solution has also been obtained for the MLE of a
decreasing failure rate density for non-random sample size (cef.

Section 6, [10]).

ce Non-increasing densities, that is the class of densities
for which h(xl) 2> h(xz) if x < Xye For non-random sample size,
Grenander [9] has derived for this case the MLE for a density h(y)
and for the corresponding distribution function H(Y) (cefe 361, [9])e
For an ordered sample (!i, coe, !h) of fixed size the MLE of H(y)

et



~4i

is the smallest concave majorant of the empirical distribution
functione The MLE ‘or h(y) can be written in the same form as
(5e3), namely

: 'lT 3 1 ~
max min n ,,(v-u)(Yv-.{u)J, if Y.SySYi+1

-

P i+l S'L 5 .
(5¢9) h(y) = : - (0 £1<n-1)

0 if Y
2 r

where ¥, 1s the left end point of the support of H(y)e

For a renewal process with a non-increasing density, a MLE
can be obtained within the class ¥ = {h(x):/mh(x) <1le Let
= (o)
(xl, coe, XN(t)) be a sample from a renewal process over {04t],
and let (Yl, coey Yn) denote {Xi s L <1 < N(E) = n} arranced
in increasing order. Let ’a be the subclass of non-increasing

densities h ¢ 9f which satisfy

¥

1
j h(y) dy = a,

L

for some fixed constants 819855%%%52 o For 1 <1 <n and

Yi-l <y < Y. define

(5410) () =a/(Y, -1, 1) = h,

and for y > Y let h*(y) be any function which is non-increasing

on [Yn,ﬂ) and satisfies



N
N

el

[ h*(y) dy £ a.

For h e ’a’ one has

n n
N 17\1 i o2
ir:11 h(L)[1-K @] <o irle hy = #(ashyeee,h )

that is, the maximum of the 1ikelihood function over aa is
attained at a density of the form (5410) for some choice of the
constants 245 1 <1< n. Thus the MLE for h ¢ 9 1is obtalned
by maximizing over all .?la < M for which the ai's are non-
increasinge GSpecifically the MLE for h ¢ X is that function }‘;

which maximizes §(af,h1,u-,hn) subject to

(5011) Oﬁa319h12h22“°2hn209
U @©
(5412) f—h*(y)dy —1- a.[ B*(y)dy < .

it L 2 <Ugt ,1¢ i, £ ny (5.11) can be written as
0 )

i
o
(5013) zhi(yi-zi_l) +h (U-Y .)=1-a
(o} o
1=1
n @
(5414) 2 by (T,-7, .) + hio(Yio_U) +f h*(x) dx < a,
1=1 +1 Y
o n

E S——— - — ————



N
W

The integral term in (5.14) can be set equal to zero without

affecting the likelihood, so (5.1.) becomes

But §(a,h1,°°°,hn) satisfies Brunk's conditions and (5.11),
(5413), and (5¢15) define a convex sety so Brunk's iterative pro-

cedure (cefs Corollary 2,1, [3]) yields the required maximume

If UD Y, (5.12) can be written as

N U
(5616) z hi('x.'_. = Yi_,) +f h*(y) dy = 1 - «
v
n

and

[ h*(y) dy < a.

Pick h*(y) to be zero for y > Y o Then (5.16) can be written

G

I
(5417) zhi(yi v )1 a,] h*(y) dy = O
1=1 U

Again (5411) and (5417) define a convex set and Brunk's procedure

can be applied,



B s

The h¥* chosen will possibly have mass at ¥y = ® which
should not be surprising since U > %1 represents the information
that there is an observation larger than all the other observations,
The arbitrary character o~ n» for .y Yh results in a similar
arbitrariness in the MLE, For > Yh the MLE can be extended in
any manner which is non-increasings and which maintains the required

area,

6e MAXIMUM LIKELIHOOD ESTIMATION FOR A MARKOV RENEWAL PROCESS
Throughout this section, write N(t) = N, u, = U, JN(t) =J

whenever t igs fixede From (4e2) the likelihood function for a

N-1
(fel) =p-1-H (@] B p B ( )
: L $ =0 Jkdksl Ik Fern
which may be rewritten as
m m DIik(t) m Ni(t)
(6e2) L= p B H p L-8E@] 8 & &nx Yo
I 15 4y Ik -2

Consider a maximum likelihood problem for which the quantities
{pik, 1<iy k<m and {Hi(x), 1<i<m} are not functionally

dependente The likelihood function then factors into two parts

given by
m m N,, (t)
ik
(603) p II L p
Jo =1 =1 1K



and

i ]

which can be separately maximized, If, furthermore, the Hi's
themselves are not functionally dependent, then (6..) can be

factored into m parts given by

N, (t)

(645) 0 hEe.) | 27
:'C:l 2 2 1K ,|(t)
and
()
(646) (1 - H(v)] hgl hy (X,)

which can be maximized separately,

Thus the problem of obtaining eaMLE for an MRP in which
(pij)’ Hyy Hyy eee, H ars not functionally related, reduces to
three separate maximum 1ikelihood problems: (1) the problem of
maximizing (6e3) which is equivalent to finding the MLE ﬁij of the
transition matrix of a Markov chain, (i1) the problem of maximizing
(6e5) which is equivalent, to finding the MLE gi for m-1 densities
based on non-random sample sizes, (i1i) the problem of maximizing
(6e6) which is equivalent 4o finding the MLE H of the density of
a renewal processe. Solutions of problem (1) have been obtained by
Billingsley [4]e. Problem (i1) is Just the classical maximum 11keli-
hood problem for which solutions are well known, The solution of

problem (1ii) has been obtained for a few cases in Chapter 5,



In particular the MLE for an element Qij(x) of the transition
distribution matrix is given by

. .31j(t) Hi(x;t) 1f 1= Ty
(6e7) Qij(x;t) E
faij(t) H, (x3t) iF 1t In(t)®

If a functional relation exists between (pij)’ Hyp Hyy ooey H

the problem is much more difficulte

A 1 e A e s
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